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MODEL OF PRICE DYNAMICS AND CHAOS

Jan Kodera, Quang Van Tran, Miloslav Vošvrda*

Abstract

In this article we analyse a neoclassical model of infl ation. Our aim is to reconstruct the neoclassical 
theory of infl ation to obtain a model which generates non-periodical oscillations of price level 
which is considered to be a realistic approximation of actual price level evolution. We start our 
analysis with the Fisherian equation of exchange. The assumption on non-variability of the velocity 
of money circulation parameter is relaxed in favour of dependence on expected infl ation. The 
resulting model of infl ation is a two-equation model where price evolution depends on production 
dynamics which is assumed to be an exogenous variable. After that, the two-equation model is 
re-formulated as an autonomous system to a model where production dynamics is determined by 
a Kaldorian type’s model. By adding Kaldor’s model to the two equation system, we create a four 
equation model. Both our models are able to generate more complex dynamics, i.e. non-linear 
cycles and chaos, which we examine by generating time series from numerical example an 
analysed them with the help of an advanced non-linear method. 

Keywords: Price dynamics, two-equation model, four-equation model, numerical examples, 
non-linear time series analysis

JEL Classifi cation: E32, E37

1. Introduction 

The aim of this article is to provide an answer to the question whether the traditional 
models of infl ation are able to generate more complex dynamics. As we know the 
actual time series of economic variables very often exhibit non-periodical oscillations. 
This phenomenon is in direct contradiction to the behaviour of linear dynamic models 
which are traditionally used for modelling economic time series. These models could 
only capture linear (symmetric, periodical) explosive or diminishing oscillations in 
these series. Though persistent oscillations are also possible in the linear system, they 
are only singular solutions for a given set of parameters. On that aspect, the theory of 
linear dynamic systems is perfectly elaborated using the very effective tools of matrix 
theory.  Furthermore, linear dynamical models are very often disturbed by a stochastic 
process. In this way we obtain instead of linear oscillations irregular motion reminiscent 
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of actual motion of economic variables. Though stochastic linear models present a viable 
scientifi c method of economics and econometrics with many applications, it is unable to 
identify the source of irregular and endogenous fl uctuations of economic variables.  

Unlike linear model, non-linear deterministic systems could display non-linear, 
non-periodic oscillations which look like stochastic chaos. The theory of non-linear 
deterministic systems can be found in Guckenheimer’s and Holmes’ famous work (1986). 
Their work attracted many followers, for example Kuznetsov (1998), Perko (2001). 
According to this theory, an economy is a non-linear system, in which its dynamics 
is fully coincident with the actual motion of its variables producing non-periodic 
oscillations.  This interpretation of economic systems is fundamental in non-linear 
deterministic systems because according to it the origin of economic fl uctuations results 
from the inside structure of the system, not as a consequence of irregular external shocks 
as the real business cycles theory suggests. 

In our article we will use the macroeconomic approach based on traditional macro-
economic theory to which non-linear relationships are added.  Since non-linear models 
can exhibit more complex behaviour, i.e. non-periodical oscillations, we formulate 
a non-linear dynamical system to describe the behaviour of an economy. We begin with 
a two-equation model including expected infl ation and a money market based on the 
work of Chiarella (1990). In our model, expected infl ation and price level are endogenous 
variables while production and money supply are exogenous ones and instead of function 
arctan used by Chiarella for the relationship between velocity of money and expected 
infl ation we express this relationship by a logistic function which seems to be a more 
appropriate choice for this purpose than function arctan. 

After that, we construct another model which consists of four differential equations 
describing the relationships of economic variables in commodity market, capital 
formation, expected infl ation and money market. To capture the dynamics of production 
and capital formation, we employ the well-known Kaldor’s model (1940) which contains 
two equations. In this two equation system, the fi rst one describes production dynamics 
and the second one describes the dynamics of capital formation. This system itself 
produces non-linear periodical oscillations of production and capital. Then we merge this 
two equation model with the modifi ed two-equation model proposed by Chiarella (1990), 
so that the Kaldor’s model will determine production which becomes an endogenous 
variable of the entire system. By this way, we create a four-equation non-linear model 
able to generate even more complex and chaotic oscillations. 

In the empirical part of our work, fi rst we will demonstrate how our models work on 
several numerical examples. Then we use our models to generate a univariate time series 
and with help of non-linear technique for time series analysis, we reconstruct the original 
dynamics from one dimensional time series and calculate two important measures of 
chaotic behaviour: the Lyapunov exponent and correlation dimension from the series 
in order to verify the ability of non-linear technique to detect chaotic dynamics from 
series produced by our models.  The structure of the paper is as follows. In Section 
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2, we provide a short literature review on this matter. In Section 3 the presentation of 
the two-equation model, Kaldor’s model and the four-equation model is presented. In 
Section 4 we proceed with the testing of time series generated by two-equation and 
four-equation models with help of Lyapunov exponents and correlation dimension. In 
Section 5 we will end with some concluding remarks.

2. Literature Review 

Oscillations of economic variables have become an important subject of interest for 
researchers since nineteen thirties. Economists have tried hard to fi nd the cause of 
economic fl uctuations and several theories on this matter have been developed. Until 
recently, the real business cycle theory is considered to be the most comprehensive theory 
which is capable of describing economic cycles with the highest rate of pregnancy. The 
theory emerged in the beginning of the eighties and the fi rst serious work on this matter 
was established by Kydland and Prescott (1982). According to this theory, the original 
cause of economic fl uctuations is any kind of external shock or disturbance, but mainly 
of technological character, that hits the economy and derails it from the equilibrium 
position. The shock is spread into different variables over time due to the inter-temporal 
connections among them. Through market mechanism, economic variables adjust 
themselves to a new level and a new equilibrium is established. Therefore, economic 
fl uctuations, resulting from these microeconomic interactions, are the best response 
to an external shock. The dominance of real business cycle theory has considerably 
suppressed the room given to macro-economic approach in order to elaborate business 
cycle for a long period. The prevalence of real business cycle theory is clearly seen when 
we compare the amount of publications somehow connected with the real business cycle 
theory with the quantity of publications using macroeconomic approach.

Despite the undeniable dominance of the real business cycle theory in the recent past, 
one can fi nd works on economic fl uctuations resulting from an endogenous cause.  In 
fact, its dominance is somehow eroded in the light of the recent economic turbulence. 
Those dismissive remarks of Rosser (1999) on the business cycles theory from the 
macroeconomic perspective might be premature and one may expect some resurrection 
of the macroeconomic approach in the near future. But let’s start with a brief description 
of development of this theory from the very beginning.

The fi rst attempt to explain the cause of economic oscillations based on macroeconomic 
approach can be dated back to the beginning of nineteen thirties in the works of Tinbergen 
(1930) and Frisch (1933) who tried to explain the cyclical behaviour of an economy 
through the fl uctuations of investments with the help of a difference-differential equation. 
Then Kaldor (1940), contrary to the traditional Keynesian multiplier-accelerator concept, 
came up with the idea that savings and investments are not linear function of production. 
Thank to this non-linearity, the economy as a system can generate the well-known 
cyclical behaviour. Since our work is linked to this Kaldor’s idea, we will come back to it 
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in full details in the next section.  Later, Goodwin, Samuelson, Phillips (see Allen, 1956) 
further developed the endogenous concept of business cycles. In principle, Samuelson’s 
approach to how to explain business cycles is based on discrete dynamics. According 
to him, consumption is a linear function of delayed incomes and as income accelerates 
capital accumulation, investment is also a function of lagged production. From these 
assumptions Samuelson derives a linear difference equation of second order. For a certain 
combination of its parameters, this equation can generate periodic oscillations, which is 
the origin of fl uctuations in an economy. Phillips (1954) has built his model on the same 
assumption, but unlike Samuelson, he uses the continuous time framework. In his model 
he unifi ed the multiplier and the accelerator principle and derived a linear differential 
equation of second order which can produce linear oscillations. Finally, Goodwin (1951) 
assumes that actual realized capital stock rarely can reach the desired level with respect 
to product and he introduced a non-linear accelerator and studied the impact of this 
imbalance on business cycles. He found that without technological progress, an economy 
in this setting can oscillate without any exogenous factor, the equilibrium of the whole 
economy is unstable. However, due to the non-linearity, the economy does not explode 
and is kept inside a limit cycle. With technological progress, there is no equilibrium point 
and the depression periods of the economy are always shorter than the boom ones which 
is in line with the observed stylized facts on business cycles. 

Kalecki (1971) has immensely contributed to the modern macroeconomic theory of 
economic cycles and oscillations or put it more precisely, he has revived it.  In his work, 
Kalecki goes back to the idea suggested by Tinbergen and Frisch in the early nineteen 
thirties. According to him, in each investment one must distinguish three following stages: 
fi rst, the time, when a decision on investment is made, then the period of time needed for 
the production of capital goods and fi nally, the time when the capital goods are delivered. 
In a continuous economy, given the law of motion of capital stock and with respect 
to the depreciation relationship of capital, by this construction, the dynamic of capital 
stock in the economy is a non-linear difference-differential equation.   Capital stock 
in the model described by this difference-differential equation exhibits more complex 
behaviour including chaos. As a result, oscillations of capital stock induce fl uctuations 
of other economic variables.

Chiarella (1990) takes a step further in the endogenous macroeconomic approach and 
proposes a continuous model in which non-linear economic dynamics is explained. 
His idea is closely linked to Goodwin’s model of business cycle presented above. He 
also modifi es Goodwin’s model but, above all, he introduces a model of monetary 
dynamics with adaptive expectation of infl ation. The non-linear relationship in 
his model is embodied in the velocity of money circulation, where the velocity is 
a non-linearly function of expected infl ation1.  Chiarella’s model is improved further 
by Flaschel, Franke and Semmler (1997). These authors introduce a class of non-linear 

1 The expected infl ation is defi ned as an annualized relative infi nitesimal change in the expected price 
level.
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dynamical systems in which they examine the behaviour of monetary sector in short-run, 
macroeconomic fl uctuations as well as the interaction of product, labour, and monetary 
sector. These models can exhibit even more complex dynamic behaviour and the authors 
have substantially contributed to the further development of the theory on non-linear 
deterministic systems. As our work is built upon these signifi cant contributions, we will 
explain them in detail in the next section. 

In this short literature review we have shown that the macroeconomic approach of 
explaining economic fl uctuations has not died as some may think. On the contrary, it still 
has its own followers. In our work we will make use of various ideas of our predecessors 
and add new suggestions to it. Namely, we replace the original fi ction in Chiarella’s model 
by a logistic function. Later we combine Kaldor’s model with the modifi ed Chiarella’s 
model to get richer dynamics. From the mathematical point of view, we are benefi ted from 
the use of Guckenheimer’s book as a broad guide to non-linear dynamical systems. We 
also take a huge advantage from Perko’s book which takes us through when dealing with 
linear and especially non-linear equations and their applications in non-linear dynamical 
systems. Finally, we would like to mention Kuznetsov’s book where the author develops 
an effective theory of bifurcation and its application.

3. Two and Four-Equation Models of Price Dynamics

The two-equation model 

Let us start with a neoclassical model of money market with adaptive expectation of 
infl ation. The model contains two equations. The fi rst equation in this two-equation 
model of price dynamics is based on the equation of exchange or the Fisherian equation: 

 MVT = PT ,   (1)

where M, VT , P, T denote the money supply, transactions velocity of money circulation2, 
the price level3 and the number of trade (real transactions) respectively. The supply of 
money is considered to be an exogenous variable. The equation of exchange is usually 
expressed in the production form. Let Y  be fi nal production (gross domestic product) and 

 ,Ya
T

  

then equation (1) get the form

 MV = PY , (2)

2 Transactions velocity of money circulation is a number of transactions carried out by one money 
unit in a time period. 

3 The price level is defi ned as the changes in the prices of market goods over time with respect to the 
prices in the base period.
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where V = aVT. The production form of the exchange equation is more convenient for 
our analysis. Note that Fisherian equation is not the accounting identity, but it is an 
equilibrium condition. 

In order to present and precisely describe neoclassical theory of price movement, it is 
necessary to take into account not only the assumption about the nature of the equilibrium 
of the analysed equation, but also the assumption that Y and V are constant in the short 
run. It leads to a very simple conclusion that immediately follows from equation (2). 
This conclusion is that price depends on M, which is usually formalised by the following 
equation 

 
.VP M

Y


 
Assuming that V, Y are constant, we get a linear dependence of price level on money 
supply.

The processes which equalize the fl ow of money MV with the fl ow of nominal fi nal 
production PY are called as Marshalian and Ricardian adaptation processes. We will 
formulate the Marshalian adaptation process because it captures the further development 
of the modern neoclassical theory of infl ation better. The Marshalian process states that 
when the system is not in equilibrium, i.e. equation (2) is not fulfi lled, than there are 
forces which adapt the system to equilibrium through the processes acting on commodity 
market, for example if the supply of money is relatively high, which means

 MV  >  PY , 

then the relatively high balances on current deposits are leading up to higher purchases 
in the commodity market. As a consequence, the price level on commodity market goes 
up. It means that the right hand-side of the above-mentioned equation increases and the 
system returns back to equilibrium.

When the supply of money is relatively low, which means 

MV  <  PY ,

then economic agents start to save more money to increase  relatively low balances. This 
reduces demand for goods and services at commodity market and hence, the price level 
must go down. The right-hand side keeps decreasing until the equilibrium is restored. 
This approach where price dynamics is infl uenced by money stock is applied relatively 
frequently, even in econometric models (see Arlt, Kodera, Mandel and Tomšík, 2006). 

The modern approach to the equilibrium in money market differs from the traditional 
one. Equation (2) is rearranged in the following way

 
1 .M PY
V

  
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Now we defi ne the amount of money required by agents. This quantity of money reacts 
to determining parameters, i.e. the price level, the product and the constant (or slowly 
changing and technologically determined) velocity of money. We call this quantity 
a demand for money and defi ne it in the following way

 
1 .dM PY
V

  (3)

With regard to (3) the equilibrium condition (2) has a form

                                                                M  =  Md  .

The traditional neoclassical theory assumes that the velocity of money to be constant. 
Friedman in his seminal work (1956) showed the expected infl ation plays an important 
role in money demand determination. He suggested that money demand decreases as 
expected infl ation increases. Friedman also interpreted the decline of money demand 
as the traditional Fisherian theory. A more exact interpretation of the dependence of 
money demand on expected infl ation could be found in Chiarella (1990). In his work he 
postulates money demand as a non-linear function depending upon expected infl ation. 
He uses the Fisherian equation (3), where the velocity of money V is increasing 
function of expected infl ation on the interval (–∞, ∞) and is restricted in this interval by 
its least upper bound and highest lower bound. For this purpose function arctan is used 
in Chiarella’s work.  This function expresses the fact that velocity of money increases 
in expected infl ation within the bounds of technological restrictions.  In our article we 
follow his approach but we deviate from it in details. We also consider the Fisherian 
money demand, but postulate the velocity of money as a logistic function of expected 
infl ation. In our opinion the velocity function should approximate very closely highest 
lower bound for low infl ation. Then, for increasing infl ation the velocity of money 
increases very quickly and very quickly approximate its minimum upper bound. The 
logistic density function is very similar to the arctan density function and it has lighter 
tails than the ones of the arctan density function. In our opinion, logistic function is 
a more proper choice for the model. On the one hand, it is an elementary function, 
therefore it is easy to operate with. On the other hand, due to its nature mentioned 
above, it more precisely refl ects the dynamics of propensity to invest in our model.  

The second equation in the model which describes infl ation expectation dynamics is 
formed adaptively. Let us assume the velocity of money in the demand for money to be 
an increasing function of expected infl ation. 

1
( )

dM PY
V 

 .

where Md stands for demand for money, P means the price level, V is the velocity of 
money, π denotes the expected infl ation. Taking the logarithm of the above equation we get

 ( )dm p y v     (4)



PRAGUE ECONOMIC PAPERS, 3, 3013        365

where md - logarithm of demand for money, p - logarithm of price level, y – logarithm of 
production, v  - logarithm of the velocity of money. Logarithm of the velocity of money 
is assumed to be given by the following equation

 0( ) ( )v v       (5)

where constant v0 is determined by a technological level of the banking sector. Parameter 
κ is a constant and θ is a logistic function solving the logistic equation

 
      d

d
g h

 
   


      

where g and h are parameters. With an initial condition θ(0) = θ0 we get a particular 
solution of the above differential equation:

.        
0

0 0

( ) g

g
h g h e 

 
   




          (6)

Now we are ready to introduce a differential equation which captures the development 
of  the price level over time in the extended model. This development is usually called 
as the price level dynamics.

Let us consider that variables y, p and π are smooth functions of time. The rate of infl ation 
or instant increment of the logarithm of price level  pֹ        is affected by the disequilibrium 
in money market equal the difference between the constant supply of money m, and the 
demand for money md, so we get

( )dp m m   .

where σ > 0 is an adjustment parameter and  pֹ       is the derivative of the logarithm of the 
price level with respect to time. Replacing md from (4) and using (5), we get

 0[ ( )]p m p y v          .     (7)

The above equation describes price level dynamics, which is realised through the 
Marshall adaptation process. 

Let us denote by π expected infl ation. The instant increment of expected infl ation is 
denoted by   and the acceleration of expected infl ation is labelled by  . An adaptive 
expected infl ation is expressed by 

 ( ).p         
(8)

Substituting from (7) to (8) we get

   0 .m p y v                      (9)
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Using this relation we get the fi nal form of the equation describing adaptive expectation 
of infl ation. Let us differentiate both sides of the equation (9) and replace pֹ    from 
equation (8). After some rearrangements we get

 
1 1 1 d ( ) – .

d
sm y    

   
       

      (10)

quation (10) is a second order differential equation for variable π with endogenous 
variables m and y. The right hand side of this equation is m y   which equals the 
difference between the rate of growth of money stock and production. Let us assume 
that in an economy the rate of growth of production oscillates with linear periodical 
oscillations, for example cosy t . If the central bank decides and is able to control 
the money supply so that it closely follows the evolution of production growth rate, then 
the time dependence of growth rate of money supply is the same, thus cosm t , and 
therefore the right hand side of (10) equals zero. 

 
1 1 1 d ( ) 0.

d
    

   
       

    (11) 

This example is the case when central bank chooses the monetary policy which is 
perfectly adaptable to production dynamics. Now, let us assume that central bank does 
not adapt money supply at all. In this case money supply is a constant, therefore we have  

0m  . Replacing this term in (10) we get

 
1 1 1 d ( ) cos( ).

d
t     

   
        

    (12) 

The system of two non-linear fi rst order differential equations was transformed into one 
second order differential equation. As we are dealing with a non-linear problem we have 
to resort to numerical methods in our analysis. Therefore we will select a set of numerical 
values for the parameters appeared in the above equations. 

Numerical example 1

The selection of numerical values of parameters in equations (8) and (9) is submitted 
to the aim of this paper which is to show that non-linear dynamic models presented 
here are able to generate chaos. For this purpose we choose such numerical values of 
parameters by which the chaotic dynamics can be ensured. At the same time, we try our 
best to get clear economic interpretation from these parameters and get them fall in line 
with the underlying economic nature. Parameters of adaptation ω, σ are assigned values 
σ = 0.6 and ω = 0.8 and the only criterion of doing so is their ability to generate chaos. 
If we look at equation (11) or (12) we notice that the numerical values of parameters 
are interchangeable without any consequence for the solution. Though the speed of 
adaptation in the money market and the speed of adaptation in adaptive expectation 



PRAGUE ECONOMIC PAPERS, 3, 3013        367

of infl ation separately do not have signifi cant impact on the shape of the solution of 
equations (11) and (12), but in combination they do infl uence the dynamics. Their joint 
effect is expressed as the product of σω and the sum ω-1+σ -1.  

When selecting the value for the parameters of function θ we face a similar problem. 
Given our primary objective in this paper as we have already stated above, we will 
not experiment economy with various sets of parameters. Rather we put our emphasis 
on keeping the shape of function in line with our belief. Calibrating the parameters 
and fi nding their values and their exact correspondence in order to make them be in 
accordance with economic theory will be the next stage of our research. For this reason, 
the parameters in the function θ are chosen as follows: g = h = 1, θ0 = 0.5, κ = 15. The 
value for parameter of production growth rate is chosen ρ = 0.8.

Equation (12) becomes:

 
1 1 1 d ( )15 0.8cos( ),

0.48 0.6 0.8 d
t   


        

    (13)

where

  
0

0 0

1( ) .
1g

g
h g h e e 


 

    


 

       
 (14)

The most effective way for obtaining the numerical solution is to transform the equation 
(13) into a system of three autonomous differential equations of variables π, q and t. Let 
these variables are dependent on time denoted by τ. As equation (13) is a differential 
equation of higher order, we transform it into a system of three differential equations of 
the fi rst order to obtain its numerical solution.  For this purpose, we introduce auxiliary 
variables q and t which are functions of time denoted as τ. Let us remind that variable q 
has no exact economic interpretation and defi ne it as follows:    

 
1 1 1 d ( )15 ,

0.48 0.6 0.8 d
q   


      

     (15)

Then, after integration and small rearrangement of (15), we get

0.48 (0.8 0.6) 6.2 ( ).q      

Using (14) we obtain
6.20.48 (0.6 0.8) .

1
q

e      




From (13) and (15) we get 
[ 0.8cos( )].q t  

The third variable of our three-equation system is time which is defi ned as t = τ, therefore 
we have:

1t 
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We use software package Mathematica to solve this three-equation dynamical system. 
Phase portrait and time evolution of expected infl ation π of the above system is presented in 
Figures 1 and 2. In Figure 1, the phase portrait of the three-equation system is shown and we 
can observe its chaotic behaviour. In Figure 2, the one-dimensional evolution of expected 
infl ation is shown and we can clearly see the non-periodical feature of its fl uctuations.

Figure 1
Chaotic Attractor4 for the Numerical Example 1

Figure 2
The Dynamics of the Expected Infl ation π

4 An attractor is a subset of space to which the initial evolution of a dynamical system is attracted 
eventually.
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The four-equation model

When deriving this model, we are inspired by Kaldor’s seminal work (1940) which has 
laid an important foundation for endogenous theory of business cycle. Kaldor’s model 
is frequently presented in many works on modern business cycle theory, for example, 
Gabisch and Lorenz (1989); Lorenz (1994) and Franke, Semmler (1997). These eminent 
works provide an analysis and further upgrading of Kaldor’s model.  In our work we 
improve the traditional Kaldor’s model, where investment function will be a logistic 
function of productivity of capital. The two-equation model includes variable y, which 
stands for the logarithm of production. This variable is present in the right hand side 
of equation (7). In the original model, it is an exogenous variable and its dynamic is 
described by relationship cosy t which after integration gets the form siny t . 
Now we build four-equation model which includes two-equation model of price dynamics 
which is identical with two-equation model presented above and Kaldor’s model which 
generates production and capital dynamics. The four-equation model contains four 
variables price level, expected infl ation, production and capital. The dynamics in this 
model is endogenous. 
A traditional form of this model describes the dynamics of real production and capital 
stock. The dynamic of production is described by

  ( , ) – ( )Y I Y K S Y     (16)  

where Y, K depend on time and stand for a production and a capital stock respectively. 
The parameter α > 0 is the adjustment parameter. Investments I are increasing in Y and 
are decreasing in K. The savings S are an increasing function of Y. The equation (16) 
describes a production dynamics which is expressed as a consequence of disequilibrium 
between investments and savings.
The capital increase K  is equal to the difference of investment and capital consumption. 
The capital consumption is assumed to be an increasing function of capital stock D(K). 
Hence we can formalize the equation expressing capital dynamics as follows

( , ) ( )K I Y K D K 

The investment function is supposed to be the product of a propensity to invest Ij
Y

  
which depends on an expected productivity of capital χ and production Y 

 ( , ) ( ) .I Y K j Y  
Assuming that agents are expecting actual product of capital, we have 

.Y
K

 

With regard to the above relation, the equation (17) gets a form

 ( , ) ( ) ( )y kYI Y K j Y j e Y i y k Y
K

     
 
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From now on we will use logarithmic expressions. Let’s denote ε = log χ = y – k , where 
y, k stand for y = log Y, k = log K respectively. Using this notation we can transform (17) 
as follows:

Function i is a composite function of y-k on domain (-∞,∞), which captures the 
dependence of propensity to invest on logarithm of Y/K. The propensity to invest i is an 
increasing function of y-k and is assumed to approach zero as ε decreases to minus infi nity 
and approaches to the maximum level for increasing y-k. We assume that a product of 
a constant μ and a logistic function λ, depending on ε, is a reasonable approximation of 
the propensity to invest. The logistic function λ is the solution of the following differential 
equation      

d
( ).

d
a b

 
   


   

Let us consider an initial condition λ(0) = λ0. Then the logistic function λ takes on the 
following form 

0

0 0

( )
( )) a

a
b a b e 


 

   




    
.

We assume the propensity to invest to be a product of an arbitrary positive constant μ 
and function λ  

0

0 0

( ) ( )
( ) a

a
i

b a b e 

 
   

   

 
  

     .

or 

 
0

0 0

( ) ( )
( ) a y k

a
i y k y k

b a b e
 

 
    

 
    

     .

For the saving function we are going to use the following expression  

  0 1( ) .S Y s s y Y   

The above equation describes the dependence of savings on investments as the product 
of a production Y and a propensity to save s0 + s1 . y which depends on y. Let us rearrange 
equation (17) using the expressions for investments and savings. We get

 0 1[ ( ) ( ) ].Y i y k Y s s y Y       
 (18)

Dividing equation (19) by Y, we obtain 

 0 1[ ( ) ( )]y i y k s s y      . (19)

Let D = β . Kγ, β, γ  (0, 1) denote a capital consumption expressing the depreciated 
portion of capital. The capital formation in the closed economy is described by the 
following differential equation 

 ( , )K I Y K K    , 
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which can be expressed in the following form: 

 
( )K i y k Y K     

.  
Dividing the above equation by K we get 

 
1( ) .K Yi y k K

K K
     


 

Using logarithms instead of original values of Y and K we get  

 ( 1)( ) y k kk i y k e e        .  (20)

Equations (20) and (21) describe the production dynamics and the capital formation. The 
fi nal forms of these equations are as follows

  
0

0 1( )
0 0

( ) .
.a y k

a
y s s y

b a b e
 


   

  
   

     
  (21)

  
( 1)0

( )
0 0 .

y k k
a y k

a
k e e

b a b e
 


 

 
 

 
   

    
  (22)

Now we will present four-equation model of price dynamics. In fact, this model is very 
similar to the two equation model but the external linear oscillation of the rate of product 
growth (ρ cos yֹ    ) is replaced by the non-linear oscillation generated by the system of 
equations (21) and (22) which are the equations constituting specifi c type of Kaldor’s 
model. Some preliminary analysis of four-equation model was established in works 
of Kodera and Vošvrda (2006) and Kodera (2002) where the four-equation model was 
drafted and its ability to generate chaotic dynamics was shown.   

Taking into account equations (6), (7) and (9) we get

               
      

 
0

0
0 0

g

g
p m y p v

h g h e 


 

   

 
           
          (23)

 
 

0
0

0 0
g

g
m y p v

h g h e 


    

   

  
                 
 .  (24)

Now we have equations (21) and (22) for real segment of economy and equations (23) 
and (24) for its monetary segment. Together they constitute an autonomous system of 
economy with complex dynamics of price level and expected infl ation. The following 
simple numerical example gives a possible evolution of prices and infl ation expectation.

The structure of the above four-equation system has interesting features. The system of 
equations (21) and (22) infl uences the system of two equations (23) and (24), but it is not 
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reversely infl uenced by that system, because neither p nor π is present in this system. The 
system of equations (21) and (22) supplies the system of equations (23) and (24) with 
periodically oscillating variable y, which produces the chaotic oscillations of variables p 
and π in the system of equations (23) and (24) as we will see later. 

Numerical example 2

Let α =35, a = b=1, λ0=1/2, μ=0.25, s0=0.2,  s1=0.05,  s 2=0, β=0.1, γ=1. The numerical 
values for monetary segment are the following: σ=0.6, ω=0.8, , v0=1, g=h=1, θ0=0.5, 
κ=30. Equations (21)-(24) become:

( )

0.2535 (0.2 0.05 )
1 y ky y

e− −

 = − + + 


( )

0.25 0.1,
1

y k
y kk e

e
−

− −= −
+



150.6 2 1
1

p y p
e π−

 = − − + + + 


150.8 0.6 2 1
1

y p
e ππ π−

  = − − + + −  +  


The fi rst and the second equation could be solved separately as the system of two 
variables y, k. In this case the system exhibits limit cycle as it is shown in Figure 3. The 
periodical evolution of variables y, k can be found in Figure 4. We can observe non-linear 
and periodical behaviour of the two variables of production and capital. We can also 
observe higher fl uctuations of production compared to the ones of capital. Further, in the 
dynamics of capital, the slower decay alternates with its faster growth. 

Figure 3
The Phase Portrait of Kaldor’s Model
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e 
       
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           
 

The first and the second equation could be solved separately as the system of two variables y, 
k. In this case the system exhibits limit cycle as it is shown in Figure 3. The periodical 
evolution of variables y, k can be found in Figure 4. We can observe non-linear and periodical 
behaviour of the two variables of production and capital. We can also observe higher 
fluctuations of production compared to the ones of capital. Further, in the dynamics of capital, 
the slower decay alternates with its faster growth.  
 
Figure 3 
The Phase Portrait of Kaldor’s Model 
 

 
 

Figure 4 
The evolution of variables y and k (dashed line)  
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Figure 4
The evolution of variables y and k (dashed line) 

The behaviour of the above four equation system is shown in Figures 5 and 6. In Figure 
5 we show the projection of attractor in the three dimensional space of axis y, p, π. The 
evolution of the variable π is shown in Figure 6. 

Figure 5
The Projection of Attractor into Space y, p, π
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Figure 6
The Evolution of Expected Infl ation 

In this section, we have drafted two different models intended to explain the complex 
dynamics of price level series. Both models exhibit non-periodic oscillations but there 
is some dissimilarity between them. The two-equation model consists of equations (7) 
and (8) for the price dynamics, in the two-equation model dynamics of price level and 
expected infl ation depends on the difference between rates of growth of its variables, 
see equation (10). If y and m oscillates and the linear oscillations (i.e. functions sine or 
cosine) have suffi ciently large amplitude, then the price dynamics of this model could 
be chaotic (see Chiarella, 1990). If the difference between rates of growth of variables y 
and ms are small or even zero, then the chaotic movements in price dynamics diminishes 
and it is replaced by non-linear periodical oscillations. The two equation model is able 
to produce chaotic oscillations but its disadvantage is that the dynamics of the variable y 
(and ms) is determined outside the system. The system works as a forced oscillator. 

The four-equation model consists of two equations (7) and (8) describing the price 
dynamics and two other equations (19) and (20) capturing the dynamics of production 
and capital. This dynamics is represented by Kaldor’s model. As we know, Kaldor’s 
model is a relatively closed one whose variables are not affected by variables present in 
the two-equation model for the price dynamics. On the other hand, the model of price 
dynamics does contain one variable which is production y from Kaldor’s model. By 
linking them together, we examine how fl uctuations in the real sector affect the price 
dynamics in the original two-equation model. It turns out that the (four-equation) model 
could produce chaotic oscillations as well. We have found that both can produce chaotic 
dynamics. In the next section, we will examine how the characteristics of the chaos of 
two-equation model differ from the ones of the four-equation model. 
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4. The Analysis of Time Series 

In this section we will analyse the evolution of price level and expected infl ation. The 
evolution of these two variables is represented by time series which are generated by 
the two equation model calibrated in numerical example 1 in Section 3. Time series 
of our interest will be examined in state space in such a way that fi rst we reconstruct 
their trajectories in state space and then the chaotic descriptors will be estimated as 
recommended by Kantz (1997) and Sprott (2003).

For this purpose the correlation dimension and the largest Lyapunov exponent are 
used. For better understanding let us make a brief digression to remind the reader the 
relevant theory. Correlation dimension and the largest Lyapunov exponent are two 
typical descriptors of chaotic systems, where the former describes geometrical structure 
of trajectories of a chaotic system in state space and the latter characterizes dynamics of 
the chaotic behaviour. 

Correlation dimension

The geometry of a set formed by trajectories of a dynamic system in phase space often 
is very complicated and does not have to be an integer. On the contrary, it tends to have 
a fractal dimension and the existence of a fractal dimension might indicate the presence 
of chaos. There are many different measures for fractal dimension and one of them is 
correlation dimension. The calculation of correlation dimension is based on correlation 
integral C which is defi ned to be the portion of pairs of points xt and xs , whose distance 
is less than ε:

 2( , , ) :
( 1)

N

t s
m t s N

C N m H x x
N N

 
  

  
 

where H is Heaviside function, m is embedding dimension, and N is the number of 
observations. In the limit of an infi nite amount of data (N → ∞), and for a small ε, one 
can expect the correlation sum C to follow the power law (C ≈ eD), therefore  correlation 
dimension Dc

m can be defi ned as the slope of the plot of log C(N, m, ε) versus log ε:

 
log ( , , ): lim lim

log
m
c

C N mD 


   (25)

The correlation sums for the series of price level and expected infl ation are calculated 
with program TISEAN (Hegger, 1999) for embedding dimensions up to 10. The 
numerical calculation of correlation dimension according to equation (25) requires 
ε → 0 and N → ∞. In reality, we have only a limited number of observations; in fact, 
there are only 2,500 observations of both series of price level and expected infl ation. 
So we can evaluate correlation dimension at certain small distances and this makes 
correlation dimension fl uctuate (seen Figures 9 and 10). In these fi gures, the correlation 
dimension of two time series of our interest are shown in various embedding dimensions. 

ε →0   N→∞



376      PRAGUE ECONOMIC PAPERS, 3, 2013

Because of its fl uctuation, we cannot estimate a single value for correlation dimension 
in the whole interval, but we can only calculate a scaling region (Kantz, 1997), where 
the value is approximately constant. As it is seen on Figures 9 and 10, these intervals are 
(-2, 1.5) for series of price level and (-1.3, 2) for series of expected infl ation. It can be 
observed that they fl uctuate inside an interval of (2, 3) and from these interval, the exact 
values of correlation dimension of series price level and expected infl ation generated by 
the two-equation model are 2.50 and 2.80 respectively. These values indicate that the 
structure of the system is a fractal dimension type.

Figure 9
Correlation Dimension vs. Log (ε) of Price Level Series

Figure 10
Correlation Dimension vs. Log (ε) of Expected Infl ation Series
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The largest Lyapunov exponent

Correlation dimension is not the only invariant that describes a chaotic system. There are 
other ones that are very useful and are frequently used to characterize properties of chaotic 
systems – such as Lyapunov exponents. Generally, they are defi ned as a set of logarithms 
of absolute values of eigenvalues of linearized dynamics of a system, averaged over the 
whole attractor. This means that in the phase space there is a system of eigenvectors 
where one certain Lyapunov exponent belongs to each of them. If at a certain moment 
in an n-dimensional space, an n-dimensional infi nitesimal sphere containing the certain 
number of points lying on its surface is chosen, then this sphere can be deformed into 
an ellipsoid over the course of time. The measure of how much the sphere is deformed 
in each individual axis is dependent on the values of the corresponding Lyapunov 
exponents. 

The estimation of all Lyapunov exponents is very diffi cult. For practical purposes the 
largest Lyapunov exponent (denoted as λ) is the most important one. It determines the 
average rate of divergence of two neighbouring trajectories starting from two close 
points in the state space. This divergence is an exponential process. If we choose such 
two points xi(t0) and xj(t0) in the state space at time t0, then at time t + t0, their distance 
during the course of time can be described as 

       0 0 0 0
t

i j i jx t t x t t x t x t e     .

The largest Lyapunov exponent is estimated as follows: in the state space we randomly 
select a set of M reference states xk(t0), for k = 1, …, M at time t0. Then we defi ne a small 
surrounding Ok of size ε consisting of states xi

(k), for k = 1, …, |Ok| to each of these 
reference states. Then we track how the distance between reference states xk and elements, 
which are parts of their surroundings at time t0, will be changing over the course of time. 
Finally we defi ne this variable:

       0 0
1 1

1 1 ln
kOM

k
k i

k ik

S t x t t x t t
M O 

     .

Needless to mention that if two close trajectories diverge from each other in a state space, 
then S(t) grows when t increases. The slope of the increasing part of the plot of relation 
S(t) versus t is the value of the largest Lyapunov exponent. All known states in the state 
space can gradually be selected as reference states and the sizes of ε and Ok should be 
chosen to be large enough so that each reference point has several of its own neighbours 
(Horák et al., 2003). 

To calculate the largest Lyapunov exponent in our price level and expected infl ation 
series two important parameters need to be determined fi rst: time delay  and embedding 
dimension m. To avoid information redundancy, the value of the time delay for price 
level and expected infl ation series is chosen as 17 and 19 respectively, where the fi rst 
minimum of mutual information occurs. As far as the value of embedding dimension is 
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concerned, we follow the rule suggested by Takens (1985) which states that m should 
be greater than 2 Dc

m. Because Dc
m < 3 as it was mentioned before, the largest Lyapunov 

exponent will be estimated for m = 2 to 7. The values of S(t) are calculated by TISEAN 
software package again. The plots of S(t) versus t for series of price level and expected 
infl ation are shown in Figures 11 and 12. In both fi gures, before reaching the area of 
saturation, an area of linear growth, can be seen in the course of time. The slopes of 
these areas decrease rapidly with increasing correlation dimension. As mentioned before, 
the largest Lyapunov exponent is the slope of the area with linear growth with lower 
embedding dimension. The values of the largest Lyapunov exponent calculated by this 
method for series of price level and expected infl ation are rather small and are 0.08 and 
0.02 respectively. These numbers show that the dynamics of the system of two equations 
can be reliably forecast in intervals (0, 0.08) and (0, 0.02) of time. 

Figure 11
The Plot of S(t) versus Time of Price Level Series

Figure 12
The Plot of S(t) versus Time of Expected Infl ation Series
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By the same token, we analyse the evolution of price level and expected infl ation of 
the four-equation model. These time series are generated by the four-equation model 
calibrated in numerical example 2 in Section 5. When calibrating our four-equation 
model, we keep all parameters in the last two equations unchanged so that later we can 
observe how fl uctuations in the real sector of economy affect the price level and expected 
infl ation in the monetary sector. The chaotic behaviour of these variables will be again 
determined through values of the correlation dimension and the largest Lyapunov 
exponent.

The correlation sums of all the series of our interest are calculated with program TISEAN 
for embedding dimensions up to 10 and plots of the relation between correlation 
dimension and log(ε) in various embedding dimensions are shown in Figures 13 to 
14. It is clear that there is a required plateau area in which the correlation dimension 
can be determined. The correlation dimensions of price level and expected infl ation 
series obtained from our four-equation model are calculated from the scaling region, as 
mentioned before, where the value fl uctuates again in interval (2, 3) and we can make 
a similar conclusion about the correlation dimension of the structure of the system 
generated by four differential equations as in the case of the system of two equations. 
(The exact values of the correlation dimension of series price level and expected infl ation 
are 2.3 and 2.6 respectively.)

Figure 13
Correlation Dimension vs. Log (ε) of Price Level Series
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Figure 14
Correlation Dimension vs. Log (ε) of Expected Infl ation Series

To calculate the largest Lyapunov exponent in series of our interest, it is necessary to 
determine suitable values of the time delay τ and the embedding dimension m. Time 
delay τ for these series are 26, where their mutual information measure reaches their fi rst 
minimum. The chosen embedding dimensions for estimation of the largest Lyapunov 
exponent are m = 2, 3, 4 and 5. The values of S(t) are calculated by program TISEAN 
again. The plots of S(t) versus t for series of our interest are shown in Figures 15 to 16. 
The value of the largest Lyapunov exponent of price level series equals 0.15 and the one 
of expected infl ation series equals 0.10.  

Comparing the estimated values of correlation dimension and the largest Lyapunov 
exponent of dynamic system of price level and expected infl ation of the two-equation 
model with the one of the four-equation model, it can be seen that the introduction 
of the fl uctuations of the real sector of economy only leads to a slight change in the 
geometrical structure of trajectories of our chaotic system in state space. Namely, the 
evaluated correlation dimension of the system has changed downwards slightly from 
2.5 to 2.8 to 2.3 to 2.6 respectively. On the other hand, as far as the dynamics of our 
chaotic behaviour is concerned, the involvement of fl uctuations of the real sector of 
economy causes a substantial change in the dynamics of the examined chaotic system. 
The estimated values of the largest Lyapunov exponent increases from 0.8 and 0.02 to 
0.15 and 0.10 respectively. It is necessary to point out that in both cases the value of the 
largest Lyapunov exponent of our system is rather small. 
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Figure 15
The Plot of S(t) versus Time for Series of Price Level in 4-Equation Model

Figure 16
The Plot of S(t) versus Time for Series of Expected Infl ation in 4-Equation Model

5. Conclusion

In this article we have tried to fi nd an answer to the question if traditional models of 
infl ation can produce complex dynamics. In traditional linear models economic variables 
can only exhibit linear fl uctuations, which is in sharp contrast to behaviour of actual 
economic variables which very often produce non-periodical oscillations. Trying to 
explain this behaviour, we use non-linear deterministic approach where the complex 
dynamics stems from endogenous structure of system, i.e. from its non-linearity. First, 
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we introduced a two equation model to explain the dynamics of price level and expected 
infl ation in an economy. Then we add Kaldor’s model which describes the dynamics of 
capital and production in the economy to the two equation model to connect oscillations 
in real economy to the dynamics of price level and expected infl ation. By combining 
Kaldor’s model with the two equation model of price dynamics mentioned we get our 
so called four equation model which contains two segments: the real segment captured 
by Kaldor’s model and the second one captured by our two equation model of price 
dynamics. This connection is not only possible, but thank to interaction of the two 
segments, it makes the dynamics of the whole system more complex.  

To analyse behaviour of variables of our interest in the model, a set of desirable 
parameters is chosen for the two equation model and a time series of price level and 
expected infl ation is generated. Using state space reconstruction technique, we estimate 
the values of two typical descriptors of chaotic systems from our time series generated 
by the two equation model: correlation dimension and the largest Lyapunov exponent. 
For our series we fi nd that the value of the correlation dimension of the attractor is 2.5.  
The value of the largest Lyapunov exponent is 0.08 which is a positive but relatively 
small. The fact that correlation dimension of the system is constant at 2.5 with positive 
largest Lyapunov exponent indicates that nonlinear technique can detect and identify the 
existence of deterministic chaos in our system generating the time series used for our 
analysis. 

In our four equation model the output of our numerical example shows that merging the 
two equation model with Kandor’s model is possible and makes the dynamics of the 
whole system more complex. First, the simple dynamics of two variables product and 
capital still evolves in line with the theory. Then, using the same set of parameters for 
two equation model, we introduce oscillations in the real sector of economy and connect 
them with the price dynamics and generate a time series of price level and expected 
infl ation. Again, we use the state space reconstruction technique to determine correlation 
dimension and the largest Lyapunov exponent of the reconstructed state space in the 
series generated by our four equation model. By introducing fl uctuations in the real 
sector to the monetary one, the geometrical structure of trajectories of our system has 
changed slightly, its correlation dimension increases from 2.5 to 2.8 and the largest 
Lyapunov exponent, representing its dynamics, increases from 0.8 and 0.02 to 0.15 and 
0.10 respectively as our non-linear technique analysis has detected. On the other hand, 
the deterministic chaos nature of the system is proved to be preserved. 

Our results have confi rmed our a priori expectation that including some simple 
non-linearity into traditional models can lead to more complex dynamical behaviour of 
these models. The confi rmation of this idea has a quite important for economic modelling 
because it solidifi es the foundation for further development of modelling dynamic 
systems which are based on traditional macro-economic theory. As such, it shows that 
deterministic models are also able to capture the realistic movement of macro-economic 
variables. We also show that nonlinear time series technique can successfully detect 
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and quantify the presence of deterministic chaos in time series generated by a dynamic 
system and once when the availability of real data is not an issue, one can look into the 
data and examine the possible existence of chaos in real economic processes. For further 
research but it would be very interesting to investigate how the model could behave 
under bifurcation.
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